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Dissipative quantum tunneling of two-level systems driven by dc-ac fields
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The time-dependent average population in a two-level system interacting with an Ohmic boson bath and
driven by a dc-ac field is obtained. The study is performed within the noninteracting-blip approximation and
for the high-frequency driving case. The integro-differential master equation and the exact formal solution for
the average transition probability are obtained. The dissipative quantum decay and the transition temperature
from the coherent to the incoherent motion are investigated. The effect of the external electric field on the the
dissipative two-level system is found to destroy its coherence.@S1063-651X~98!05908-X#
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Recently, there has been much interest in understan
the effect of dissipation and finite temperature on the qu
tum mechanical tunneling in two-level systems@1,2#. Both
Ohmic dissipation~which is relevant to the problem of mac
roscopic quantum tunneling! and strong electric field effect
have received considerable attention@1–9# An exact path-
integral solution for the average population of a dissipat
two-level system was obtained@4#. The transient two-leve
system dynamics for the high-frequency driven case w
studied by means of the series method defined by the re
sion relations@5# and the integro-differential kinetic equatio
method @6,7#. Investigations based on the non-Markovi
master equation approach@which is valid beyond the
noninteracting-blip approximation~NIBA !# that governs the
dynamics of two-level systems were also performed@8#.

We address in this work the problem of the dissipat
quantum tunneling in two-level systems driven by dc-
fields. The evolution of the population in a given well
calculated with the integro-differential kinetic equatio
method@6,10,11#, which was already used to study a host
phenomena including electron localization@10#, low-
frequency, and even harmonic generation@11,12#, and the
transient dynamics in the low-temperature limit of dissip
tive two-level systems under the influence of a external e
tric field @6,7#. In this paper the exact formal solution of th
kinetic equations in the NIBA is obtained, which gives t
average two-level system population when the hig
frequency driving case is considered. We describe the d
pative relaxation of the system in the overdamped reg
and we calculate the transition temperature in which the tr
sition from the coherent to the incoherent motion occurs

According to previous works@1,2#, a two-level system
driven by a dc-ac fieldV(t)5mE01mE cosv0t and in con-
tact with a bosonic oscillator bath can be described by
spin-boson Hamiltonian

H052\sxD/21\(
l

v lbl
†bl1sz(

l
gl~bl

†1bl !1szV~ t !.

~1!

In the above equationsx and sz are the Pauli matrices;D
corresponds to the tunneling matrix element between the
PRE 581063-651X/98/58~2!/2632~4!/$15.00
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minima, which is related to the energy levels splitting;bl
†

andbl are the creation and annihilation boson~phonon! op-
erators, respectively;v l is the frequency of thel th boson;
andgl is the matrix element of the particle-boson couplin
In the driving field potentialV(t), E0 is the dc electric field
intensity, which breaks the symmetry of the two-level sy
tem; E is the amplitude of the laser field;m is the transition
dipole between the two energy levels; andv0 is the fre-
quency of the driving laser field.

All necessary information on the role of the environme
is contained in the spectral density functionJ(v), which for
the case of Ohmic dissipation is given by@1,2#

J~v!5~2p\/q0
2!av exp~2v/vc!, ~2!

whereq0 is the the distance between the wells~a discussion
of the connection between a double-well and a two-le
model is presented in Ref.@1#!; vc is the cutoff frequency,
which is much larger thanD (D/vc!1 is the limit of pri-
mary interest for the macroscopic quantum coherence p
lem!; anda is a dimensionless phenomenological parame
related to the dissipation@1,2#.

In the high-frequency driven case, the oscillating drivi
field is effective in reducing the blip length, as stated
Grifoni et al. @5#. Thus, whenever the NIBA is applicable i
the absence of a time-periodic field, it is justified even be
in the presence of a high-frequency driving field for t
Ohmic case@5#. In both the high-frequency driving field cas
(D/v0!1) and in the long-time asymptotic limit, we obtai
the master equation for the average population^x(t)& within
the NIBA ~for details, see Refs.@6,7,13#; hereafter, we take
\51)

d^x~ t !&
dt

52E
0

t

@h~ t2t1!1g~ t2t1!^x~ t1!&#dt1 , ~3!

with ^x(0)&51 as the initial condition. The functionsh(t)
andg(t) are defined by
2632 © 1998 The American Physical Society
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h~ t !5D2J0@2a sin~v0t/2!#sin@bv0t#

3sin@Q1~ t !/p#exp@2Q2~ t !/p#, ~4!

g~ t !5D2J0@2a sin~v0t/2!#cos@bv0t#

3cos@Q1~ t !/p#exp@2Q2~ t !/p#, ~5!

where

Q1~ t ![E
0

`J~v!

v2 sin vt dv, ~6!

Q2~ t ![E
0

`J~v!

v2 ~12cosvt !cothS 1

2
bv Ddv. ~7!

In the above expressionsJ0 is the zeroth-order Bessel func
tion, a52mE/v0, b52mE0 /v0, andb51/kBT. Through a
Laplace transformation with respect to time, the exact form
solution for x(l) @the Laplace transform of̂x(t)&# within
the NIBA is

x~l!5
12h~l!/l

l1g~l!
, ~8!

where h(l) and g(l) are, respectively, the Laplace tran
forms of h(t) andg(t). For a.1/2, the functionsg(l) and
h(l) have well-defined expansions around zero,

g~l!5g01lg11•••, ~9!

h~l!5h01lh11•••, ~10!

with g1 ,h1!1. Then, by applying an inverse Laplace tran
formation, we get

x~t!5X01@12X0#e2tG, ~11!

where t5v0t. The relaxation rateG and the equilibrium
populationX0 constants are given, respectively, by

G5
g0

v0
5e2d2aAp

T̃122a

2G~a!G~a1 1
2 !

(
m52`

`

Jm
2 ~a!

3cosh@p~m1b!T̃#uG@a1 i ~m1b!T̃#u2, ~12!

X052
h0

g0

52

(
m52`

`

Jm
2 ~a!sinh@p~m1b!T̃#uG@a1 i ~m1b!T̃#u2

(
m52`

`

Jm
2 ~a!cosh@p~m1b!T̃#uG@a1 i ~m1b!T̃#u2

,

~13!

whereJn(z) and G(z) are, respectively, thenth Bessel and
the Euler Gamma function and we have definede5D/v0,
d5v0 /vc , andT̃5v0 /pkBT.

According to Eq.~11!, x(t) presents an exponential inco
herent relaxation to the equilibrium population valueX0 with
a characteristic relaxation rate constantG. Whent→`, the
l

-

average population is given approximately byX052h0 /g0,
the equilibrium population. Both the equilibrium populatio
X0 and the relaxation rateG constant depend on the fiel
parametersa andb, the dimensionless dissipation parame
a, and the system temperatureT.

Figure 1 shows that the absolute value of the equilibri
population constantX0 decreases when the system tempe
ture is higher and/or the driving laser frequencyv0 is small.
The decreasing rate ofX0 is stronger when the field param
etera is small, which means a weaker dc field intensityE0
and/or a higher driving laser frequencyv0. On the other
hand, Fig. 2 shows that the modified rate constantG*
5ln@2G/e2d2a# is bigger when the field parameter increas
but smaller if the temperature of the system is higher. Ho
ever, the modified rate constantG* never vanishes. When
the dimensionless dissipation parametera.1/2, we obtain
that only the quantum dissipative relaxation can be obser
in our system. So we can conclude that the localization p
nomenon observed in the undriven case cannot be obse
in the driven case@1,2#.

FIG. 1. Dependence of the absolute value of the equilibri
population constanth0 /g0 on the scaled ac fielda52mE/v0 and

on the modified temperatureT̃ ([v0 /pkBT). The figure is ob-
tained by takingb52mE0 /v051 anda51.3.

FIG. 2. Dependence of the modified rate constant on the in

sity of ac fielda and on the scaled temperatureT̃5v0 /pkBT. The
figure is obtained by takingb52mE0 /v051 and a51.3. G*
stands for ln@2G/e 2d 2a#.



th
o

tu
io

he

io

w

e

to
t

s

x
sit
t

a-

to

be

in

s

re

ra-
ter

he
-
ld
m-

the
hen
the

c-ac

he
an
h-

ro-
ge
al
gh
ive

2634 PRE 58BRIEF REPORTS
In the context of the macroscopic quantum coherence,
observation or not of an oscillatory behavior would be
fundamental significance to our understanding of quan
mechanics. Previous analyses on the role of the dimens
less dissipation parametera.1/2 at T50 have highlighted
the absence of a ‘‘coherent’’ behavior whena.1/2 and that
coherence is very unlikely to occur even forT.0
@1,6,13,14#. Consequently, we shall restrict ourselves in t
following to the range of values 0,a,1/2. To investigate
the transition from the the coherent to the incoherent mot
we limit ourselves to the low-temperature limitg
[pkBT/vc!1. In this case, it is straightforward to sho
that

h~l!5v0e2d2a f 1~a,N,a!, ~14!

g~l!5g2a21
Ap

2vc

D2G~12a!G~l/2gvc1a!

G~a11/2!G~l/2gvc2a11!
JN

2 ~a!

1v0e2d2a f 2~a,N,a!. ~15!

The functionsf 1(a,N,a) and f 2(a,N,a) are given by

f 1~a,N,a!5
p

2G~2a!H (
m50

`

Jm
2 ~a!~m1N!2a21

1 (
m51

`

8 Jm
2 ~a!uN2mu2a21

N2m

uN2muJ ,

~16!

f 2~a,N,a!5
p

2G~2a!H (
m50

`

Jm
2 ~a!~m1N!2a21

1 (
m51

`

8 Jm
2 ~a!uN2mu2a21J , ~17!

where G is Euler’s Gamma function and the prime to th
summation means the exclusion of the termm2N50.

Since no coherent behavior emerges wheneverb
52mE0 /v0ÞN @13#, we set the scaled dc field strength
be an integerb52mE0 /v05N. When the temperature is no
zero, there is no branch point inx(l). However, the branch
point (l50, whenT50, and 0,a,1/2) cuts degenerate
into a set of poles on the negative reall axis with an uneven
spacing that grows roughly linearly withT. The complex-
conjugate pair of poles moves towards the negative real a
eventually hits it, and then moves along it towards oppo
directions. If we now defineT* (a) as the temperature a
which these two poles coincide@1,14#, it is clear that~i!
whenT,T* (a), a coherent motion, i.e., a damping oscill
tory behavior, should be observed in the system and~ii !
whenT.T* (a), the average population̂x(t)& is given by a
sum of decay exponentials and cannot present an oscilla
behavior.

We can calculate the transition temperatureT* (a) at
which the transition from the coherent to the incoherent
havior occurs through@1,6,13,14#
e
f
m
n-

n,

is,
e

ry

-

2pkBT* ~a!

\De f f~a!
52

G~a1u* !

u* G~12a1u* !
uJN~a!u1/~12a!,

~18!

whereDe f f is the renormalized transition matrix element
the undriven case@1,14#, u* is the real~negative! solution of
the equation

u* @C~a1u* !2C~12a1u* !#51, ~19!

and C(z) is the digamma function, which is defined a
C(z)5d ln G(z)/dz @15#.

From Eq.~19! we can see that the transition temperatu
T* (a,N,a) changes not only witha, but also with the in-
tensity of the dc-ac field. Figure 3~obtained by considering
b5N51) depicts the dependence of the transition tempe
ture T* (a,N,a) on the dimensionless dissipation parame
a and on the intensity of the modified ac fielda52mE/v0.
We can see thatT* oscillates, which is a consequence of t
fact thatJN(a) is an oscillatory function. The transition tem
peratureT* (a,N,a) decreases when the modified ac fie
intensitya is stronger. The decreasing of the transition te
peratureT* (a,N,a) when the intensity of the dc fieldb
5N becomes stronger is directly related to the fact that
amplitude of the Bessel functions amplitude decreases w
their order becomes higher. Consequently, we can alter
transition temperatureT* (a) at which the transition from
the coherent to the incoherent behaviorT* occurs or even
destroy the coherence by changing appropriately the d
field intensity.

In summary, we have studied the time evolution of t
average population in a two-level system interacting with
Ohmic boson bath and driven by a dc-ac field. In the hig
frequency driving case, we have derived the integ
differential master equation within the NIBA for the avera
transition probability. We have carried out the exact form
solution of the average population equation throu
Laplace transformers, obtaining the behavior of dissipat

FIG. 3. Behavior of the transition temperatureT* (a,b,a) as a
function of the dimensionless dissipation parametera and of the ac
field amplitudeE. The figure is obtained by takingb52mE0 /v0

51. @T* #8 stands for log10@kT* /\De f f#.
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quantum decay fora.1/2. The external electric field wa
shown to be capable of destroying coherence and the
peratureT* at which the transition from a coherent to a
incoherent behavior occurs depends on the driving field
tensity.
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